

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : EMF(16EE214) Course & Branch: B.Tech - EEE Year &

Sem: II-B.Tech & II-Sem **Regulation:** R16

(b) Find |E| at P; (c) Find a unit vector in the direction of E at P.

UNIT-I

INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

1. The three vertices of a triangle are located at A(-1,2,5), B(-4,-2,-3), and C(1,3,-2). (a) Find the length of the perimeter of the triangle. (b) Find a unit vector that is directed from the midpoint of the side AB to the midpoint of the side BC. (c) Show that this unit vector	
multiplied by a scalar is equal to the vector from A to C and that the unit vector is therefore	
•	[12M]
2. The vector from the origin to point A is given as (6,-2,-4), and the unit vector directed	
from the origin toward point B is $(2, -2, 1)/3$. If points A and B are ten units apart, find the coordinates of point B.	[12M]
3. A circle, centred at the origin with radius of 2 units, lies in the xy plane. Determine the unit vector in rectangular components that lies in the xy plane, is tangent to the circle at	
$(\sqrt{3}, 1, 0)$, and is in the general direction of increasing values of y.	[12M]
4. A vector field is specified as $G = 24xya_x + 12(x^2+2)a_y + 18z^2a_z$. Given two points P(1,2,-1) and Q(2,1,3), find: (a) G at P; (b) a unit vector in the direction of G at Q; (c) a unit vector	
	[12M]
5. A field is given as $G=[25/(x^2+y^2)](xa_x + ya_y)$, Find: (a) a unit vector in the direction of G at $P(3,4,-2)$; (b) the angle between G and a_x at P; (c) the value of double integral on the plane	
	[12M]
6. Three vectors extending from the origin are given as $r_1 = (7,3,-2)$, $r_2=(-2,7,-3)$ and $r_3=(0,2,3)$. Find: (a) a unit vector perpendicular to both r_1 and r_2 ; (b) a unit vector perpendicular to the vectors r_1-r_2 and r_2-r_3 ; (c) The area of the triangle defined by r_1 and r_2 ;	F10) (I
	[12M]
7. (a) Express the field $D = (x^2 + y^2)^{-1}(xa_x + ya_y)$ in cylindrical components and cylindrical variables: (b) Evaluate D at the point where $\rho = 2$, $\Phi = 0.2\pi$, and $z = 5$, expressing the result in	
	[12M]
8. Express in cylindrical components; (a) the vector from C(3,2,-7) to D(-1,-4,2); (b) a unit	
	[12M]
9. The surfaces $\rho=3$, $\rho=5$, $\Phi=100^{\circ}$, $\Phi=130^{\circ}$, $z=3$, and $z=4.5$ define a closed surface. (a) Find	
enclosed volume; (b) Find the total area of enclosing surface; (c) Find the total length of	
the twelve edges of the surfaces; (d) Find the length of longest straight line that lies entirely within the volume.	[12M]
10. Given point P(r=0.8, $\boldsymbol{\theta}$ =30°, Φ =45°), and E= $1/r^2(\cos\Phi a_r + \sin\Phi/\sin\boldsymbol{\theta} a_{\Phi})$; (a) Find E at P;	[121/1]

[12M]

ELECTROSTATICS	
1. (a) State and explain Coulomb's law indicating clearly the units of quantities in the	equation of
force?	6M
(b) State and prove Gauss's law and write limitations of Gauss's law?	6M
2. A charge Q_0 located at the origin in free space, produces a field for which $E_2=1 \text{kv/m}$ at	point
P (-2, 1,-1). (a) Find Q_{0} .	
Find E at M (1, 6, 5) in (b) Cartesian coordinates. (c) Cylindrical coordinates.	12M
3. Four positive point charges 10 ⁻¹² coulomb each are situated in X-Y plane at points (0,	0), (0, 1)
(1, 1) and $(1, 0)$ m. Find the electric field and potential at $(3/4, 3/4)$ and $(1, 1)$?	12M
4. (a) Derive the expression for the electric field intensity due to line charge?	6M
(b) Four concentrated charges Q_1 = 0.3 μ C, Q_2 = 0.2 μ C, Q_3 = -0.3 μ C, Q_4 = 0.2 μ C are Q_4	
vertices of a plane rectangle. The length of rectangle is 5 cm and breadth of the recta	ngle is 2 cm.
Find the magnitude and direction of resultant force on Q_1 ?	6M
5. (a) Derive Laplace and Poisson's equation?	6M
(b) Find electric potential due to electric dipole?	6M
6. (a) Derive the expression for electric field intensity at a point due to electric dipole?	6M
(b) Derive an expression for electric potential due to point charge?	6M
7. (a) Derive Maxwell first equation?	6M
(b) Derive the expression for torque on electric dipole in the presence of uniform electric	
	6M
8. Four point charges each of 10μ C are placed in free space at the points $(1, 0, 0)$, $(-1, 0)$	
and (0, -1, 0) m respectively. Determine the force on a point charge of 30μC located at	_
(0,0,1) m?	12M
9. Derive electrical field intensity due to charged circular ring?	12M
10. a) Write the condition for Laplace equation?	2M
b) What is the relation between electric flux density and electric field intensity?	2M
c) Define dipole moment?	2M
d) Define an electric dipole?	2M
e) State vector form of coulombs law?	2M
<u>UNIT –III</u>	
CONDUCTORS AND DIELECTRICS	
1. (a) Derive the continuity equation. What is its physical significance?	6M
(b) Derive the point form of ohms law?	6M
2. Explain the boundary conditions of two perfect dielectrics materials?	12M
3. Explain the boundary conditions between conductor and free space?	12M
4. Explain the phenomenon of polarization when a dielectric slab is subjected to an electric	
r r r r r r r	6M
5. (a) Derive the expression for capacitance of the spherical condenser?	6M
(b) Find the current in circular wire, if the current density is $\bar{J} = (1 - e^{-100\tau}) a_z$ A/m	_

Electromagnetic Fields

of the wire is 2mm?

6M

6. (a) Derive the expression for capacitance of a co-axial cable?	6M
(b) A parallel plate capacitor has a plate area of 1.5m ² and a plate separation of 5m	m. Three are
two dielectrics in between the plates. The first dielectric has a thickness of 3mm w	ith a relative
permittivity of 6 and the second has a thickness of 2mm with a relative permittivity of	of 4. Find the
capacitor?	6M
7. (a) Derive the expression for parallel plate capacitor?	6M
(b) What is the energy stored in a capacitor made of two parallel metal plates each of 3	
area separated by 5mm in air. $\varepsilon_0 = 8.854 \times 10^{-12}$. The capacitor is charged to potential d	
of 500v?	6M
8. At the boundary between glass ε_r =4 and air, the lines of electric field make an angl	
normal to the boundary. If electric flux density in the air is $0.25\mu\text{C/m}^3$. Determine the	
and magnitude of electric flux density in the glass?	12M
9. A parallel plate capacitor consists of two square metal plates with 500mm side and	
10mm. a slab of sulphur (ε_r = 4) 6mm thick is placed on the lower plate and air gap	
capacitance of capacitor?	12M 2M
10. a) Define polarization in dielectric materials?b) Write the relation between current I and current density J?	2M
c) Write the equation for energy stored in capacitor?	2M
d) Define Dielectric Strength?	2M
e) A conductivity of a wire is 5000 mho/m and it is subjected to an electric field of 0.1	
Then what is the current density (J) in a wire?	2M
<u>UNIT –IV</u>	
MAGNETO STATICS	
1. Derive the expression for torque produced on a closed current carrying when placed in	in a magnetic
field?	Ç
2. Using Biot-savart's law. Find \vec{H} and \vec{B} due conductor of finite length?	12M
3. Find the magnetic field intensity \overline{H} due to co-axial cable?	12M
4. (a) Write down maxwell's third equation in point and integral form?	6M
(b) Find magnetic field intensity \overline{H} due to solenoid carrying current I and having length	n L= 4m?
	6M
5. (a) State and explain Biot-savart's law?	6M
(b) Explain maxwell's second equation?	6M
6. (a) State and explain ampere's circuital law?	6M
(b) Derive the expression for the force between two current carrying wires?	6M
7. (a) A circular loop is located on $X^2+Y^2=9$ and Z=0 carries a direct current of 1	0A along $\overline{a_{\varrho}}$
direction. Determine \overline{H} at $(0, 0, 5)$ m?	6M

(b) Explain about Magnetic Dipole Moment?

8. Using Biot-savart law or Amperes law find \vec{H} due conductor of infinite length?

(b) Derive an expression for the force between two current carrying wires?

9. (a) Explain relationship between magnetic torque and moment?

6M

12M

6M

6M

10. a). Define Magnetic dipole moment?	2M
b). Write Lorentz force equation?	2M
c) State point form of Amperes law?	2M
d) State Ampere's circuital law?	2M
e) State Biot-savats law?	2M

$\underline{UNIT} - V$

MAGNETIC POTENTIAL & TIME VARYING FIELDS

 (b) A toroid has air core and has a cross sectional area of 10mm² it has 1000 turns and its mean radius is 10mm. find its inductance? 6M 2. Derive the expression for self inductance of solenoid and toroid? 12M
2. Derive the expression for self inductance of solenoid and toroid?
•
3. (a) A coil of 500 turns is wound on a closed iron ring of mean radius 10cm and cross section of 3
cm ² . Find the self inductance of the winding if the relative permeability of iron is 800? 6M
(b) Explain the difference between self inductance and mutual inductance? 6M
4. (a) Derive the expression for inductance of a co-axial cable?
(b) Compute the energy density in free space on account of field having $\vec{H} = 1000 \text{ A/m}$? 6M
5. (a) A coil of 1000 turns is wound on a Toroidal iron ring of mean radius 10cm and cross section of
3cm ² . Find the self inductance of the winding if the relative permeability of iron is 800? 6M
(b) Explain scalar magnetic potential and its limitations? 6M
6. Find the mutual inductance between a long, straight wire and square loop lying in same plane?
12M
7. Derive an expression for the force between two straight long and parallel conductors?
8. Derive the expression for Neuman's formula?
9. Explain the concept of energy stored in magnetic fields?
10. a) Define self inductance?
b) Define mutual inductance? 2M
c) Define inductance? 2M
d) What is the inductance of Solenoid? 2M
e) What is the inductance of Toroid?

11. Explain faradays law of electromagnetic induction and there from derive maxwell's equation in differential and integral form?

12.(a) A copper wire carries current of 1A. Determine displacement current in the wire at 1 MHz for copper $\varepsilon = \varepsilon_0$ and $\sigma = 5.8 \times 10^7$? 6M

(b) Explain pointing vector and its significance?

6M

13. Derive an expression for motional and transformer induced emf?

12M

14. What is displacement current? Explain physical significance of displacement current?

15. Explain faradays law of electromagnetic induction and derive the expression for induced e.m.f?

12M

Prepared by: N. Ramesh Raju

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : EMF(16EE214) Course & Branch: B.Tech - EEE

Year & Sem: II-B. Tech & II-Sem **Regulation:** R16

UNIT-I

INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

1.	In three dimensional coordinate s	ystems, coordinates are	
	A)perpendicular to each other	B) parallel to each other	

- C) same direction for each other D)opposite direction for each other
- 2. Three dimensional coordinate system is one in which coordinates intersect each other at A) negative points B) zero points C)positive points D) absolute points
- 3. Rectangular coordinate system is also known as
- A) Space coordinate system B) Polar coordinate system
- C) Cartesian coordinate system D)Planar coordinate system
- 3. The range of azimuthal angle φ in the spherical polar coordinates is
 - A) $[0,2\pi]$ B) $[0,\pi]$ C) $[0,\pi/2]$ D) $[-\pi, +\pi]$
- 5. The equation to a surface in spherical coordinates is given by $\theta = \pi/3$. The surface is a.
 - A) sector of a circle
 - B) A cone making an angle of $\pi/3$ with the z-axis
 - C) A vertical plane making an angle of $\pi/3$ with the z-axis
 - D) A vertical plane making an angle of $\pi/3$ with the x-axis
- 6. The equation to a surface in spherical coordinates is given by $\varphi = \pi/3$. The surface is a.
 - A) sector of a circle
 - B) A cone making an angle of $\pi/3$ with the z-axis
 - C) A vertical plane making an angle of $\pi/3$ with the z-axis
 - D) A vertical plane making an angle of $\pi/3$ with the x-axis
- 7. Expressed in spherical coordinates, the equation $x^2+y^2+z^2=4z$ becomes
 - A) $4\cos\theta\sin\Phi$ B) $4\sin\theta\cos\Phi$ C) $4\cos\theta$ D) $4\sin\theta$
- 8. The cylindrical coordinate system is also referred to as
 - A) Cartesian system B) Circular system C) Spherical system D) Space system
- 9. Transform the point (-2,6,3) into cylindrical coordinates.
 - A) (6.325,-71.57,3) B) (6.325,71.57,3) C) (6.325,73.57,3) D) (6.325,-73.57,3)
- 10. A charge located at point p (5,30°,2) is said to be in which coordinate system?
 - A) Cartesian system B) Cylindrical system C) Spherical system D) Space system

- 11. Transform the spherical system B = $(10/r)i + (10\cos\theta)j + k$ into cylindrical form at $(5, \pi/2, -2)$ A) 2.467i + j + 1.167kB) 2.467i - j + 1.167kC) 2.467i - j - 1.167kD) 2.467i + j - 1.167k12. Convert the given rectangular coordinates A(2,3,1) into corresponding cylindrical coordinates A) (3.21,56.31,1) B) (3.21,57.31,0) C) (3.61,57.31,0) D) (3.61,56.31,1) 13. Convert the point (3,4,5) from Cartesian to spherical coordinates A) $(7.07,45^{\circ},53^{\circ})$ B) $(0.707,45^{\circ},53^{\circ})$ C) $(7.07,54^{\circ},63^{\circ})$ D) $(0.707,54^{\circ},63^{\circ})$ 14. Find the spherical coordinates of A(2,3,-1)A) (3.74, 105.5°, 56.13°) B) (3.74, 105.5°, 56.31°) C) $(3.74, 106.5^{\circ}, 56.13^{\circ})$ D) $(3.74, 106.5^{\circ}, 56.31^{\circ})$ 15. Find the Cartesian coordinates of B(4,25⁰,120⁰) B) (-0.845, 1.462, 3.625) A) (0.845, 1.462, 3.625) C) (-8.45, 2.462, 6.325) D) (8.45, 2.462, 6.325) 16. Given B= $(10/r)i+(r\cos\theta)i+k$ in spherical coordinates. Find Cartesian points at (-3,4,0)A) -2i + j B) 2i + kC) i + 2jD) -i - 2k
- A) 1, r, r $\sin \theta$ B) 1, r, r C) r, r, 1

17. The scalar factor of spherical coordinates is

- 18. Transform the vector (4,-2,-4) at (1,2,3) into spherical coordinates. A) 3.197i - 2.393i + 4.472k B) -3.197i + 2.393i - 4.472kC) 3.197i + 2.393j + 4.472k D) -3.197i - 2.393j - 4.472k
- 19. Cylindrical systems have the following scalar values respectively A) 1, ρ, 1 B) 1, 1, 1 C) 0,1,0 D) 1,0,0T
- 20. he volume of a parallelepiped in Cartesian is A) dV = dx dy dz B) dV = dx dy C) dV = dy dz D) dV = dx dz
- 21. Transform the vector A = 3i 2j 4k at P(2,3,3) to cylindrical coordinates A) -3.6j - 4k B) -3.6j + 4k C) 3.6j - 4k D) 3.6j + 4k
- 22. Which of the following criteria is used to choose a coordinate system? A) Distance B) Intensity C) Magnitude d) Geometry
- 23. Vector transformation followed by coordinate point substitution and vice-versa, both given the same result. Choose the best answer.
 - A) Possible, when the vector is constant B) Possible, when the vector is variable C) Possible in all cases D) Not possible
- 24. The polar form of Cartesian coordinates is A) Circular coordinates B) Spherical coordinates C) Cartesian coordinates D) Space coordinates
- 25. The cross product of the vectors 3i + 4j 5k and -i + j 2k is, A) 3i - 11j + 7k B) -3i + 11j + 7k C) -3i - 11j - 7k D) -3i + 11j - 7k

26. Which of the following are not vector functions in Electromagnetics? A) Gradient B) Divergence C) Curl D) There is no non- vector functions in Electromagnetics
 27. The work done of vectors force F and distance d, separated by angle θ can be calculated using, A) Cross product B) Dot product C) Addition of two vectors D) Cannot be calculated
The cross product By Bot product Cyriddinon of two vectors By Culmot be calculated
28. Find whether the vectors are parallel, (-2,1,-1) and (0,3,1) A) Parallel B) Collinearly parallel C) Not parallel D) Data insufficient
29. When two vectors are perpendicular, their A) Dot product is zero B) Cross product is zero C) Both are zero D) Both are not necessarily zero 30. Find the gradient of $t = x^2y + e^z$ at the point $p(1,5,-2)$ A) $i + 10j + 0.135k$ B) $10i + j + 0.135k$ C) $i + 0.135j + 10k$ D) $10i + 0.135j + k$
31. Curl of gradient of a vector is A) Unity B) Zero C) Null vector D) Depends on the constants of the vector
32. Find the gradient of the function given by, $x^2 + y^2 + z^2$ at $(1,1,1)$ A) $i + j + k$ B) $2i + 2j + 2k$ c) $2xi + 2yj + 2zk$ D) $4xi + 2yj + 4zk$
33. Find the gradient of the function $\sin x + \cos y$. A) $\cos x i - \sin y j$ B) $\cos x i + \sin y j$ C) $\sin x i - \cos y j$ D) $\sin x i + \cos y j$
34. Compute the divergence of the vector xi + yj + zk. A) 0 B) 1 C) 2 D) 3
35. Find the divergence of the vector yi + zj + xk. A) -1 B) 0 C) 1 D) 3
36. Given $D = e^{-x} \sin y i - e^{-x} \cos y j$ Find divergence of D. A) 3 B) 2 C) 1 D) 0
37. Find the divergence of the vector $F = xe^{-x} i + y j - xz k$ A) $(1-x)(1+e^{-x})$ B) $(x-1)(1+e^{-x})$ C) $(1-x)(1-e)$ D) $(x-1)(1-e)$
 38. Determine the divergence of F = 30 i + 2xy j + 5xz² k at (1,1,-0.2) and state the nature of the field. A) 1, solenoidal B) 0, solenoidal C) 1, divergent D) 0, divergent
39. Find whether the vector is solenoidal, E = yz i + xz j + xy k A) Yes, solenoidal B) No, non-solenoidal C)) Solenoidal with negative divergence D) Variable divergence
 40. Identify the nature of the field, if the divergence is zero and curl is also zero. A) Solenoidal, irrotational B) Divergent, rotational C) Solenoidal, irrotational D) Divergent, rotational
Electromagnetic Fields

- 41. The curl of a curl of a vector gives a
 - A) Scalar B) Vector C) Zero value D) Non zero value
- 42. Find the curl of $A = (y \cos ax)i + (y + e^x)k$
 - A) 2i ex j cos ax k
- B) i ex j cos ax k
- C) 2i ex j + cos ax k
- D) i ex j + cos ax k
- 43. Find the curl of the vector A = yz i + 4xy j + y k
 - A) xi + j + (4y z)k
- B) xi + yj + (z 4y)k

C) i + j + (4y - z)k

D) i + yj + (4y - z)k

<u>UNIT –II</u> **ELECTROSTATICS**

only direction is called			[]
B) Scalar	C) Unit Vector	or D) None		
is			[]
B)-1.60219×10 ¹⁹ C	C)-1.60219×10 ⁻¹⁹ C	D) 1.60219×10 ¹⁹ C		
te point charges are sep	parated by a very smal	ll distance is known as	[]
B) Potential gradient	C) Dipole	D) None		
Potential function V=x ²	$^{2}+y^{2}+z^{2}$		[]
B) 6 V/m ²	$C)4 \text{ V/m}^2$	D)8 V/m^2		
gential force times the	radial distance at which	ch it acts	[]
B) Energy	C) Torque	D) Magnetic flux der	nsity	
governed by	law.		[]
B)Ampere's Circuital	C)Both (A) and (B) D)None of these		
ns of electromagnetics	are grouped under		[]
B) faraday's laws	C) lorentz equations	D) maxwell's equation	on	
uation, if V is the poter	ntial function, then		[]
B) $\nabla^2 V = -\rho/E$	$C)^{\nabla 2}V=0$	D)none of these		
=			[]
B) \int_{S} D. dS	C) $\int_{V} \rho_{V} dV$	D) ALL		
s a vector quantity?			[]
.1	B) Electrical field int	ensity		
	D) none of the above			
arge each equal to q are	e placed along the x-ax	xis at x=1,x=2,x=3 and	l so on .	
to this set of charges w	ill be		[]
	B) Scalar is B)-1.60219×10 ¹⁹ C te point charges are sep B) Potential gradient Potential function $V=x^2$ B) 6 V/m ² gential force times the B) Energy governed by B)Ampere's Circuital as of electromagnetics and an electromagnetics are septimes. By faraday's laws aution, if V is the potential so a vector quantity? B) $\int_S D$. dS as a vector quantity?	B) Scalar C) Unit Vector is B)-1.60219×10 ¹⁹ C C)-1.60219×10 ⁻¹⁹ C te point charges are separated by a very small B) Potential gradient C) Dipole Potential function $V=x^2+y^2+z^2$ B) 6 V/m² C)4 V/m² gential force times the radial distance at which B) Energy C) Torque governed by law. B)Ampere's Circuital C)Both (A) and (B) as of electromagnetics are grouped under B) faraday's laws C) lorentz equations unation, if V is the potential function, then B) $\nabla^2 V=-\rho/E$ C) $\nabla^2 V=0$ = B) $\int_S D$. dS C) $\int_V \rho_V dV$ is a vector quantity? B) Electrical field int D) none of the above	B) Scalar C) Unit Vector D) None is $B)-1.60219\times10^{19} \text{ C} \text{C})-1.60219\times10^{-19} \text{ C} \text{D}) \ 1.60219\times10^{19} \text{ C}$ the point charges are separated by a very small distance is known as B) Potential gradient C) Dipole D) None Potential function $V=x^2+y^2+z^2$ B) 6 V/m² C)4 V/m² D)8 V/m² gential force times the radial distance at which it acts B) Energy C) Torque D) Magnetic flux derigoverned by law. B) Ampere's Circuital C)Both (A) and (B) D) None of these as of electromagnetics are grouped under B) faraday's laws C) lorentz equations D) maxwell's equation, if V is the potential function, then $B) \nabla^2 V = -\rho/E \qquad C) \nabla^2 V = 0 \qquad D) \text{none of these}$ B) $\int_S D \cdot dS \qquad C) \int_V \rho_V dV \qquad D) ALL$ is a vector quantity? B) Electrical field intensity D) none of the above arge each equal to q are placed along the x-axis at $x=1, x=2, x=3$ and	B) Scalar C) Unit Vector D) None is [B)-1.60219×10 ¹⁹ C C)-1.60219×10 ⁻¹⁹ C D) 1.60219×10 ¹⁹ C te point charges are separated by a very small distance is known as [B) Potential gradient C) Dipole D) None Potential function $V=x^2+y^2+z^2$ [B) 6 V/m² C)4 V/m² D)8 V/m² gential force times the radial distance at which it acts [B) Energy C) Torque D) Magnetic flux density governed by law. [B) Ampere's Circuital C)Both (A) and (B) D)None of these as of electromagnetics are grouped under [B) faraday's laws C) lorentz equations D) maxwell's equation unation, if V is the potential function, then [B) $\nabla^2 V=-\rho/E$ C) $\nabla^2 V=0$ D) none of these is a vector quantity? [B) Electrical field intensity D) none of the above arge each equal to q are placed along the x-axis at x=1,x=2,x=3 and so on .

A) q	B) 3 q/2	C) 2 q	D) 4 q/4		
12. An infinite number of c	· •	, -	••	tronic	
potential at n= 0 will b		- 1 ··· · r	, , , , -	[]
A) q	B) 3/2 q	C) 2 q	D) $5 q/2$	·	
13. A tiny particle carrying	-	, -	-	he K.E.	
acquired by the particle			8	[1
A) 100 J	B) 200 J	C) 300 J	D) 400 J	·	1
14. Given $V=2x^2$ y-12z, V		,	•	[]
A) -72V	B) 62V	C) 70 V	D) 0 V		_
15. The unit of electric field	,	,	,	[1
A) A/m	B) V/m	C) V/m	D) A/sec	L	1
16. The total flux out of a c	ŕ	,	,	ement an	1
expression of a	100000000	<u> </u>		[1
A) gauss law	B)divergence theor	rem C)faraday's law	D)Maxwell's equati	ions	1
17. In homonogenous linea	, ,	, <u>,</u>	,	1	1
	B) ∇ .D= ρ		D) none	L	,
,	,	,	,	<u>-</u> 1	
18. It is given that electric f	•		d by $D = (1/1)a_t \text{ in spine}$		1
co-ordinates. The charge			2	[J
A) l/r	B) l/r ²	C) $-1/r^2$	D) r ²	•	7
19. The electric field intensity (E) and electric potential (V) are interrelated by A) E= -Divergence of V B) E= Divergence of V C) E=-gradient of V D) none of the					J
		rgence of V C) E=-gra	idient of V D) none or	f these	,
20. For an infinite line char	_	~~ /4		[]
	B) $E = \rho_S / 2 \pi \epsilon$	• •	D) None		~
21. Potential at R due to a p	_			[]
A) V=Q/ $4\pi \ \epsilon R$		· -	D) None		
22. Point charges 30nc,-20n			and (1, 5,-1) respective	ly. The	
total flux leaving a cube	of side 6 m centered	C		[]
A) 20nc	B)-2nc	C) 10nc	D) -10nc		
23. Inside a hollow spherical	al conductor			[]
A) Electrical field is z	ero B) F	Electrical field is constant	nt		
C) Electrical field cha	nges with the magnitu	ude of charge given to th	ie conductor		
D) None of the above					
24. A sphere of one meter r	radius can attain a may	ximum potential of		[]
A) 1000 V	B) 2 KV	C) 30 KV	D) 3 million volts		
Electromagnetic Fields				Page 9	_

25. Surface integral of electric fie	eld intensity is			[1
A) Electrical charge	•	B) differential of vo	lume flux	_	
C) Net flux emanating fro	m surface	D) none of these			
26. A plane z=10 m carries charg		,	e origin is	[1
_		C) -72 pi a _z V/m	_		_
27. Point charges Q_1 =1 nC and Q	_		_	ents are	
correct?	-		C	ſ]
A) The force on Q_1 is rep	ulsive B)	the force on Q_2 is the	same in magnitude as t	that-on (
C) As the distance between				·	
D) All the above		,	Ž		
28. Find the Laplacian of the Pote	ential function V	$=2x^2+y^2+z^2$		[]
A) 2V/m2	B) 6 V/m2	C) 4 V/m2	D) 8 V/m2	-	-
29. The unit of electric flux is	,	,	,	[]
A) Coulomb	B) Coulomb	/m ² C) Weber	D) Newton/ Coulon	nb	_
30. Coulomb's law States that	,	,	,	[]
A) $F=Q1Q2/4\pi \epsilon R^2$	B) F=Q1/4π	ε R C) F=Q2/4 π	R D) None	-	-
31. The electric flux density D is	, ,	,	,	[]
A) D=E	B) εD=E	C) D=εE	D) None	_	
32. The electric displacement cur	rent density is me	easured in		[]
A) coulombs/meter		/meter ² C) volts/m	D) amp/m ²		
33. Conductivity is measured in			· •	[]
A) ohm-m	B) ohms/m	C)mho-m	D) mhos/m		
34. The relation between electric	polarization and	susceptibility indicate	s that electric Polariza	tions is	
				[]
A) Independent of suscep	tibility	B) inversely	proportional to suscep	tibility	
C) Proportional to square	root of susceptib	ility D) proport	ional to susceptibility		
35. The divergence theorem appl	ies to a			[]
A) Static field only B)	time varying field	d only C) both A & B	D) magnetic fields of	only	
36. Find the Laplacian of the Pote	ential function V	$=x^2+y^2-z$		[]
A) 2V/m2 B)	6 V/m2	C) 4 V/m2	D) 8 V/m2		
37. The electric flux density (D) a	and the electric fi	eld intensity (E) interr	elated by	[]
A) $D=\varepsilon E$ B)	D=E/ε	C) $D=\varepsilon E^2$	D) D=μE		
38. First Maxwell's equation is				[]

A) $\rho_V = V.D$	B) $\rho_V = V.E$	C) both A & B	D) None		
39. Laplaces equation $V^2 V =$					
A) - ρ_v / ϵ	B) ρ_v	C) 1	D) 0		
40. The unit of field intensi	ty is		[]		
A) Coulomb	B) Coulomb/m ²	C) Weber	D) Newton/ Coulomb		
	<u>UN</u>	III –III			
	CONDUCTORS	AND DIELECTRI	<u>ICS</u>		
1. The conductivity of a m	aterial usually depends	on	[]		
A) Temperature	B) Frequency	C) Temperature and I	Frequency D) Length		
2. The electric field inside	the conductor is		[]		
A) Maximum	B) Zero	C) both a and b	D) infinity		
3. Convection current occurrent	urs when current flows	through an insulating m	nedium such as []		
A) Liquid	B) Copper	C) Resistor	D) Air		
4. Charges in dielectric ma	aterial are called		[]		
A) Bound charges	B) free charges	C) polar charges	D) none		
5. The expression for Elec	tric displacement in Di	electrics, D=	[]		
A) \in_0 E –P	B) € ₀ E +P	C) P - € ₀ E	D) both b & c		
6. The phenomena of pola	rization happens in		[]		
A) Dielectrics	B) conductors	C) insulators	D) none		
7. Point form of ohm's law	is		[]		
A) E=σJ	B) J=σE	C) E=σ/J	D) E=J		
8. For steady current, the co	ontinuity equation		[]		
A) $\nabla \cdot \bar{\mathbf{J}} = 0$	B) $\nabla \cdot \overline{\mathbf{J}} = 1$	$C) \nabla \times \bar{J} = 0$	D) none		
9. On the two sides of the	boundary, the tangentia	al components of E are	[]		
A) Same	B) Discontinuous	C) Zero	D) Infinity		
10. A dielectric material is	Isotropic if € does not o	change with	[]		
A) Point to point	B) E	C) V	D) Direction		
11. The law of refraction is			[]		
$A) \frac{Tan \theta 1}{Tan \theta 2} = \frac{\epsilon r 1}{\epsilon r 2}$	$B) \frac{Tan \theta 2}{Tan \theta 1} = \frac{\epsilon r 1}{\epsilon r 2}$	$C)\frac{Tan \theta 1}{Tan \theta 2} = \frac{\epsilon r^2}{\epsilon r^2}$	$D)\frac{Tan\theta 2}{Tan\theta 1} = \frac{\epsilon ro}{\epsilon r1}$		
12. The energy density W _n	can write		[]		
A) W=1/2 D.E	B) W=1/2 ∈ E ²	C) W=D ² /2€	D) All		
13. Which is not an examp	le of convection curren	t	[]		
A) A moving charged b	pelt	B) Electronic movem			
Electromagnetic Fields			Page 11		

C) an electron beam in	a television tube	C) Electric current flowi	ng in a copper wire
14. Unit of permittivity			[]
A) F/m	B) m/F	C) F.m	D) F/m^2
15. Dielectric strength is th	ievalue of ele	ectric field at which dielectr	ric breakdown occurs[]
A) Maximum	B) Minimum	C) Zero	D) Infinity
16. If no free charges exist	at interface then		[]
A) D_{1n} - D_{2n} = ρ_s	B) D_{1n} - D_{2n} = 0	C) D_{1n} - D_{2n} = ∞	D) None
17. A material is said to be	a conductor if		[]
A) □/ω□<<1	B) □/ω□>>1	C) □/ω□=1	$D)\Box/\omega\Box=0$
18. If a dielectric material o	of $\varepsilon_r = 4$ is kept in an ele	ectric field $E=3a_x+2a_y+a_z$, V	V/m, find electric
susceptibility.			[]
A) 1	B) 2	C) 3	D)4
19. When an electric field l	E is applied, the force	on an electron with charge	-e is []
A) $\mathbf{F}=-\mathbf{e}\mathbf{E}$	$B)\mathbf{F}=e\mathbf{E}$	C)F=-e/E	$D)\mathbf{F}=\mathbf{e}/\mathbf{E}$
20is cur	rent at a given point tro	ough a unit normal area at t	that point.
A) Current density	B) Flux density	C) Both	D) Electric field
21. At boundary condition of	of two dielectrics D _n 1=	:	[]
A) D_{n2}/ϵ	B) D _{n2}	C) ε D_{n2}	D) none
22. At boundary condition of	of two dielectrics E _t 1=		[]
A) E_{t2}/ϵ	B) E _{t2}	C) ε E _{t2}	D) None
23. The flux passing through	th a 2m ² area that is not	rmal to the xx-axis at x=4.5	5m for D=10x \bar{a}_x is [
		C) 90 C	
24. Dipole moment of two	equal & opposite charg	ges separated with equal dis	stance d is []
A) $p=Q/d$	B) p=d/Q	C) p=Qd	D) None
25. In a capacitor, the conduct	ion current and displacer	ment currents are	[]
A) Equal	B) Zero C) no	t Equal D) depend	ls on area of capacitor plate
26. The displacement current of	density is given by		[]
A) $J_D = \frac{\partial D}{\partial t}$	B) $J_D = -\frac{\partial D}{\partial t}$	C) $J_D = -\frac{\partial B}{\partial t}$	D) $J_D = \frac{\partial B}{\partial t}$
27. Polarization of dielectric n	naterials results in		[]
A) Production of eddy	y currents	B) Creation of dielectric di	
C) Release of protons		D) absorption of electrons	
28. The unit of Polarization is	the same as that of		[]
A) Electric field densi	ity (D) B) electric inte	ensity (E) C) charge	D) dielectric flux
29 The Polarization of dielect	tric material is given by		r 1

A) $P=\varepsilon_r E$	B) $P = (\varepsilon_r - 1)E$	C) $P = (\varepsilon_r - 1) E \varepsilon_o$	D) $P = (\varepsilon_r - 1)\varepsilon_o$	
30. The capacitance of an insul	ated conducting sphere	of radius R in vacuum is	[]	
A) $2\pi\epsilon_0 R$	B) $4\pi\epsilon_0 R$	C) $4\pi\epsilon_0 R^2$	D) 4πε ₀ /R	
31. The conductivity of an idea	al conductor is		[]	
A) Zero	B) infinite	C) 100C	D) 50nF	
32. The continuity equation of	the current is based on		[]	
A) Conservation of cha	arge	B) Conservation of mome	entum	
C) Conservation of mo	tion	D) Conservation of veloci	ity	
33. Capacitance is measured in			[]	
A) Coulomb/ amp	B) amp/Could	omb C) Coulomb/ volt	D) volt/ Coulomb	
34. The maximum value of app	lied electric field at wh	ich the dielectric break dowr	occurs is called []	
A) dielectric field	B) dielectric	intensity C) dielectric stren	ngth D) none	
35. Dielectrics can store the end	ergy due to		[]	
A) magnetization	B) Polarizatio	on C) density	D) electrons	
36. The conductivity of ideal co	onductor is		[]	
A) Zero	B) infinite	C) +250C	D) +100C	
37. Current density is			[]	
A) Scalar quantity B) vector quantity C) both D) none				
38. In Dielectrics displacement	current is under the inf	luence of	[]	
A) Magnetic field	B) magnetic field inte	ensity C) electric field	D) electric field intensity	
39. The phenomena of polari	zation happen in		[]	
A) Dielectrics	B) conductors	C) insulators	O) none	
40. Energy stored in capacito	or is		[]	
A) $\frac{1}{2}$ cv ²	B) ½ Lv ²	C) $\frac{1}{2}$ cI ²	O) $\frac{1}{2}$ LI ²	
	UNI	IT –IV		
		CTO STATICS		
 In steady magnetic field			r 1	
			[] ap	
A) Zero	B) <i>]</i>	C) $-\frac{\partial B}{\partial t}$	$)) \frac{\partial D}{\partial t}$	
2. The line integral of magnetic	field intensity $ec{H}$ arour	nd a closed path is exactly eq	ual to the direct current	
enclosed by that path is §	given bylaw	V	[]	
A) Gauss	B) Faraday's	C) Biot-savart	O) Amperes	
3. The magnetic force F_m on a π	moving charge is given	by	[]	
A) $F = QE$	B) $F = V \times B$	$^{\circ}$ C) F= Q V×B	O) F=0	
4. The Lorentz force equation i	s given by		[]	

A) $F = QE$	B) $F = Q (E + V \times B)$	C) $F = Q V \times B$ D)	none		
5. The Maxwell equation in time	ne variant field is given b	y		[]
$\mathbf{A})\nabla\times\vec{H}=\vec{J}$	B) $\nabla \times \vec{H} = \vec{J} + \frac{\partial D}{\partial t}$	C) $\nabla \times \vec{H} = \vec{J} + \frac{\partial E}{\partial t}$	$\mathrm{D}) \overline{V} \times \overrightarrow{H} = 0$		
6. The faraday's law in differen	ntial form is given by			[]
$\mathbf{A})\nabla\times\vec{E}=\vec{J}$	$\mathrm{B})\nabla\times\vec{E} = \frac{\partial D}{\partial t}$	C) $\nabla \times \vec{E} = -\frac{\partial B}{\partial t}$	$\mathrm{D})\nabla\times\vec{E} = \frac{\partial B}{\partial t}$		
7. In general magnetic field into	ensity is directly proport	ional to		[]
A) Voltage	B) current	C) distance	D) None		
8. In general magnetic field into	ensity is inversely propo	rtional to		[]
A) Voltage	B) current	C) distance	D) None		
9. A conductor 6m long lies alo	ong Z direction with a cu	errent of 2A in a direction. Fin	d the force experien	ced	
by the conductor if $\vec{B} = 0.08$ a	a _x Tesla.			[]
A) 0.9 a _y	B) 0.96 a _y	C) 0.96 a _z	D) 0.96 a _x		
10. The magnetic field intensity	at the centre of a long	solenoid is		[]
A) $H=N\frac{I^2}{l}$	$\mathrm{B})\frac{NI}{l}$	C) $\frac{NI}{l^2}$	D) $\frac{N^2I}{l}$		
11. The total magnetic flux con	ning out of closed surfac	ee is		[]
A) infinite	B) finite	C) zero	D)None		
12. The MFI due to an infinitely	y long straight conductor	r carrying a current I is		[]
A) $H = \frac{I}{2\pi d}$	$B) H = \frac{I}{2d}$	$C) H = \frac{l}{d}$	D) 2dl		
13. The line integral of H abou	t any closed path is exac	ctly equal to the enclose	ed by that path	[]
A) field	B) potential	C)current	D)None		
14. The MFI at the centre of the	e square current carrying	g wire is		[]
A) $H = \frac{I}{a}$	B) $H = \frac{\sqrt{2}I}{a}$	$C) H = \frac{2I}{\pi a}$	D) $\frac{\sqrt{2}I}{\pi a}$		
15. The expression for biot-sav	arts law in integral form	is		[]
A) H= $\int \frac{I.\overline{dl} \times \overrightarrow{r}}{4\pi r^2}$	B) H= $\int \frac{I \cdot d\vec{l} \times \vec{r}}{4\pi r^3}$	C) H= $\int \frac{I.\overline{dl} \times \overrightarrow{r}}{4\pi r}$	D) $\int \frac{I \cdot d\vec{l} \times \vec{r}}{4r^2}$		
16. The Amperes circuital law i	in integral form is			[]
$A) \oint \vec{H}. \ \vec{dl} = I$	$\mathbf{B})\oint \vec{H}.\ \vec{dl}=\mathbf{J}$	$C) \oint \vec{H}. \ \vec{dl} = 0$	D) none		
17. Point form of Ampere's circ	cuital law is			[]
	$\mathbf{B}) \nabla \times \vec{H} = 0$	C) $\nabla \times \vec{B} = \vec{J}$	$\mathrm{D}) \nabla \times \vec{H} = 0$		
18. The charges is motion produ				[]
A) Electric field	, ,	C) electro static fields	D) None		
19. If the particle is at rest in m		•		[]
A) Forces	B) no forces	C) can't say	D) none		

20. The force on a straight conductor in a magnetic field is given by /F/=

A) BILsinO	$\mathbf{B})\vec{F} = \mathbf{I}\vec{l}\times\vec{B}$	C) A or B	D) none		
21. The surface integral of B ov	ver a closed surface S in a m	agnetic field must be		[]
A) BSCOSΘ	B) BS SINO	C) Zero	D) none		
22. A differential current loop i	s carrying current I have a	magnetic dipole moment n	n=	[]
$A)\frac{I}{A}$	B) IA	C) <i>I</i> ² <i>A</i>	D) None		
23. Magnetic field intensity inte		• •		[]
A) $\vec{H} = \mu \vec{B}$	B) $\overrightarrow{H} = \frac{\overrightarrow{B}}{\mu}$	C) $\vec{H} = \frac{\vec{B}}{\varepsilon \mu}$	D) $\vec{H} = \frac{\vec{B}}{\varepsilon}$		
24. The concept of displacement	t current was a major contri	bution attributed to		[]
A) Faraday	B) Lenz	C) Lorentz	D) Maxwell		
25. Magnetic fields can exert for	orce on			[]
A) Moving charges onl		ges only C) A and B	D) None		
26. Ampere's law state that the	force $ec{F}$ between two parall	lel wire carrying current I ₁	and I ₂ is equal to	[]
$A) \frac{\mu_0 I_1 I_2}{2\pi d}$	$\mathrm{B)}\frac{\mu_0I_1I_2}{2\pi d}l$	$C)\frac{\mu_0 I_1 I_2}{2d}$	D) $\frac{\mu_0 I_1 I_2}{2\pi dl}$		
27. When a charged particle have	ving charge Q travels with v	velocity V in magnetic field	\overrightarrow{B} , it will experient	nce	
a force F _m is given by				[]
A) $\overrightarrow{F_m} = Q (\overrightarrow{V} \times \overrightarrow{B})$	B)QVB sin⊖	C) A or B	D) none		
28. The expression for Torque of	on a current loop placed in a	magnetic field is T =		[]
A) mB sin⊖	$\mathbf{B})\overrightarrow{m}\times\overrightarrow{B}$	C)A or B	D) none		
29. The unit of magnetic field in	ntensity \overrightarrow{H} is			[]
A) weber	B) $\frac{AT}{m}$	C)Tesla	D)no units		
30. The Curl operator used in -	fields			[]
A) Electrostatic	B) Magneto static	C) both A and B	D) none		
31. The torque on a magnetic di	ipole is $(\vec{F} = force \ and \ \vec{R})$	$= moment \ of \ arm)$		[]
$A)\vec{T} = \vec{R} \times \vec{F}$	B) $\vec{T} = \vec{F} \times \vec{R}$	$C)\vec{T} = \vec{R}.\vec{F}$	D) $\vec{T} = \vec{F}$		
32. The MFI at the centre of the	e circular loop is			[]
A) $H = \frac{1}{2a}$	B) $H = \frac{I}{a}$	$C) L = \frac{\sqrt{3}}{2a} I$	D) L = $\frac{5I}{2a}$		
33. Ampere's law state that the	force \vec{F} between two paralle	el wire carrying current I ₁ a	and I2 is equal to	[]
$A) \frac{\mu_0 I_1 I_2}{2\pi d}$	$\mathrm{B})\frac{\mu_0I_1I_2}{2\pi d}l$	$C)\frac{\mu_0 I_1 I_2}{2d}$	$\mathrm{D})\frac{\mu_0I_1I_2}{2\pi dl}$		
34. When a charged particle have	ving charge Q travels with v	velocity V in magnetic field	\vec{B} , it will experient	nce	
a force F _m is given by				[]
A) $\overrightarrow{F_m} = Q (\overrightarrow{V} \times \overrightarrow{B})$	B) QVB sin⊖	C) A or B	D) no	ne	
35. The line integral of magneti	c field intensity $ec{H}$ around a	closed path is exactly equa	al to the direct curr	rent	

enclosed by that path is give	en bylaw			[]
A) Gauss	B) Faraday's	C) Biot savart	D) Amperes		
36. In the expression $\vec{B} = \times \vec{A}$, is \overrightarrow{A} is called			[]
A) Area of the field	B) vector magnetic po	otential C) scalar magnetic poter	ntials D) None		
37. The expression for biot-sav	varts law in integral form	n is		[]
A) H= $\int \frac{I.\overline{dl} \times \overrightarrow{r}}{4\pi r^2}$	B) H= $\int \frac{I.\overline{dl} \times \overrightarrow{r}}{4\pi r^3}$	C) H= $\int \frac{I.\overline{dl} \times \overrightarrow{r}}{4\pi r}$	D) $\int \frac{I.d\vec{l} \times \vec{r}}{4r^2}$		
38. The faraday's law in integr	al form is given by			[]
A) $emf = -\int_{s} \frac{\partial B}{\partial t} . ds$	B) e $mf = \int_{s}$	$\frac{\partial B}{\partial t}$. ds C) $emf = -\int_{S} \frac{\partial D}{\partial t}$. ds	D) none		
39. The force of is e	experienced between two	parallel conductors carrying cur	rent in opposite of	direction	1.
				[]
A) Attraction	B) Repulsion	C) Zero	D) None		
40. The force of is e	experienced between two	parallel conductors carrying cur	rent in same dire	ction.	
				[]
A) Attraction	B) Repulsion	C) Zero	D) None		
	Ul	NIT –V			
MAGNET	<u> FIC POTENTIAL</u>	AND TIME VARYING	FIELDS		
1. The inductance of a solenoi	id is given by			[]
A) $L = \frac{N\mu A}{l}$	B) $L = \frac{N\mu}{l}$	$C) L = \frac{N^2 \mu A}{l}$	D) L = $\frac{N^2 \mu A}{2\pi R}$		
2. The inductance of a Torroid	is given by			[]
A) L = $\frac{N\mu A}{l}$	B) $L = \frac{N\mu}{l}$	$C) L = \frac{N^2 \mu A}{l}$	$D) L = \frac{N^2 \mu A}{2\pi R}$		
3. The divergence of magnetic	flux density $\nabla \cdot \vec{B}$ is			[]
A) $\nabla . \overrightarrow{B} = \rho_v$	$\mathbf{B}) \nabla \cdot \overrightarrow{\boldsymbol{B}} = -\boldsymbol{\rho}_v$	C) $\nabla \cdot \vec{\boldsymbol{B}} = 0$	D) none		
-	-	of field intensity H= 1000A/m?		[]
A) 0.2 J/m^3	•	C) 0.735J/m^3	D) 0		
5. The scalar magnetic potentia	•	-		[]
A) Poisson	B) Laplace	C) Both A &B	D) None	_	_
6. The vector magnetic potenti		_		[]
A) Poisson	B) Laplace	C) Both A &B	D) None		
7. What is the value of permea	•	-		[]
,	B) $4\pi \times 10^{-12} \text{ H/m}$,	D) 0		
8. The numan's formulae for fi	_	•		[]
	B) $M = \frac{\mu}{4\pi} \iint_{c1c2} \frac{dl_1}{r}$		D) none		
9. If the two coils L_1 and L_2 are	e connected in series aidi	ng the total inductance is		[1

[

]

		QUI	ESTION BANK 20
A) L_1+L_2	B) $L_1 + L_2 - 2M$	C) L ₁ +L ₂ +2M	$D) M = \frac{L1L2}{L1+L2}$
10. If the two coils L_1 and I	L_2 are connected in series oppos	sing the total inductance is]
A) L_1+L_2	B) L_1+L_2-2M	C) $L_1 + L_2 + 2M$	$D)M = \frac{L1L2}{L1+L2}$
11. If the two coils L_1 and I	L ₂ are connected in parallel aidi	ing the total inductance is]
A) L_1+L_2	B) L_1+L_2-2M	C) $M = \frac{L1L2 - M^2}{L1 + L2 + 2M}$	$D)M = \frac{L1L2 - M^2}{L1 + L2 - 2M}$
12. If the two coils L_1 and I	2 are connected in parallel opp	osing the total inductance is]
A) L_1+L_2	B) L_1+L_2-2M	C) $M = \frac{L1L2 - M^2}{L1 + L2 + 2M}$	D) $M = \frac{L1L2 - M^2}{L1 + L2 - 2M}$
13. The energy density in n	nagnetic field is given by]
A) $\frac{1}{2}\mu H^2$	$B)\frac{1}{2}\mu B^2$	C) $\frac{1}{2}\mu H$	D) none
14. The energy stored in m	agnetic field is given by]
A) $\frac{1}{2}LI$	B) $\frac{1}{2}LI^2$	$C)\frac{1}{2}I^2$	D) none
15. The coefficient of coup	ling K between two coil is]
A) K = $M\sqrt{L_1L_2}$	$B)K = \frac{M}{\sqrt{L_1 L_2}}$	$C)K = \sqrt{\frac{M}{L_1 L_2}}$	D)None
16. In free space relative pe	ermeability µ _r =	-]
A) 0	B) 1	C) infinite	D) None
17. What is the unit of Ene	rgy density?]
A) Joules	B)Weber	C)Joules /m ³	D)Weber/m ³
18. in magnetic fields $\nabla \cdot \vec{B}$	is]
$A)\nabla.\overline{\boldsymbol{B}} = \frac{\rho_{v}}{\varepsilon}$	$\mathbf{B})\nabla.\mathbf{\vec{B}} = -\boldsymbol{\rho_v}$	C) $\nabla \cdot \vec{\boldsymbol{B}} = 0$	D) none
19. The transformer induct	ion equation is given by]
A) emf = $-\oint_{\mathcal{S}} \frac{\partial \vec{B}}{\partial t}$	B) emf = $\oint_{\mathcal{S}} \frac{\partial \vec{B}}{\partial t}$	C) emf = $-\oint_{\mathcal{S}} \frac{\partial \vec{D}}{\partial t}$	D) emf = $\oint_{\mathcal{S}} \frac{\partial \vec{D}}{\partial t}$

B) rate of change of flux C) current D) none

21. Find the coefficient of coupling K between two coil, where $L_1=L_2=M=1H$ D) None

B) K = 0.5C) K=2

22. The inductance of a Torroidal ring is given by

C) L = $\frac{N^2 \mu A}{l}$ D) L = $\frac{N^2 \mu A}{2\pi R}$ B) $L = \frac{N\mu}{I}$ A) $L = \frac{N\mu A}{I}$

23. The curl of magnetic field intensity is

C) $\nabla \times \vec{B} = \vec{J}$ D) $\nabla \times \vec{H} = 0$ B) $\nabla \times \vec{H} = 0$ $A)\nabla \times \vec{H} = \vec{I}$

24. The unit of scalar magnetic potential is

A) Ampere B) Volt C) Amp/m D) Volt/m

A) flux

		QUES'	TION BANK	2017
25. Vector magnetic potential exist	as in regions where ${f J}$ is			[]
A) Absent	B) Present	C) not related to J	D) None	-
26. Vector magnetic potential ha	as applications in	,	•	[]
A) Antennas	B) transmission lines	s C) Microwave ovens	D) All	
27. Magnetic scalar potential is defi	ned in the region			[]
$\mathbf{A})\mathbf{J}=0$	B) J >0	C) J <0	$D)\mathbf{E}=0$	
28. The relation between magnetic	flux density Band vect	or magnetic potential A	A is	[]
A) $\bar{B} = \nabla . \bar{A}$	B) $\bar{A} = \nabla . \bar{B}$	C) $\bar{B} = \bar{A} X \nabla$	D) $\bar{B} = \nabla X$	\bar{A}
29. If R is the mean radius of toroid	d with N number of tu	rns and A is the area of	f cross-section	n of a toroid
then Inductance of toroid is				[]
A) $L = \frac{\mu NA}{2\pi r}$	B) $L = \frac{\mu NR}{2\pi A}$	$C) L = \frac{\mu N^2 A}{2\pi r}$	D) None	
30. If M is the mutual inductance b	petween two magnetic	ally coupled circuits h	aving self-ind	luctances L ₁
and L ₂ and K is the coefficient of	of coupling between the	em then		[]
A) $M = K \sqrt{L_1 L_2}$	$B) K = M \sqrt{L_1 L_2}$	C) $M = K L_1 L_2$	D) None	
31. The magnetic field in a solenoid	lis			[]
A) H=N/I	B) H=n/I	C) H=NA/I	D) H=I/N	
32. A toroid has air core and has a	cross-sectional area of	10mm ² . It has 1000 tu	erns and its me	ean radius is
10 mm. Find its inductance.				[]
A) 0.02mH	B) 0.002mH	C) 0.02H	D) 0.02mH	
33. Energy density in a magnetic fie	eld			[]
A) $W_H = 0.5 \mu H^2$	B) $W_H = 1/2 \mu H^2$	C) $W_H = 1/2 B.H$	D) All	
34. Inductance has equivalent use in	n magnetics as	has in electrosta	atics, includin	ng storage of
energy.				[]
A) Electric filed	B) Electric Flux dens	sity C) Potential	D) Capacita	nce
35. Self-inductance is defined as the	e rate of total magnetic	e flux linkage to the		through the
coil.				[]
A) Current	B) energy	C) Power	D) flux	
36. The mutual inductance between	two coupled circuit ha	s the property that		[]
A) $L_{12}>L_{21}$	B) $L_{12} < L_{21}$	C) $L_{12}=L_{21}$	D) $L_{12} \le L_{21}$	
37. If a current of 1.0 amp flowing i	in an inductor, L=2 he	nry, the energy stored i	in an inductan	ice []
A) 2 J	B) 1J	C) 2J/m	D) 0.5J	
38. If μ =1.0 μ H/m for a medium, H	I=2.0 A/m, the energy	stored in the field is		[]
Electromagnetic Fields				Page 18

Ω	$\mathbf{I} \mathbf{C} \mathbf{C}^{r}$	LIUI	IDA	NIIZ
UU.	169	ΓΙΟΝ	$\mathbf{I} \mathbf{D} F$	AIN IX

A) 0.5 J/r	n^3	B) 1μJ/m ³	C) $2\mu J/m^3$	D) 1J/m ³		
39. The force pro	duced by B=2wb/m ²	on a current element	t of 2 A-m is		[]
A) 4 N		B) 1 N	C) 2 N	D) 0.5 N		
40. $M_{12} = \frac{N1 012}{12}$	isind	luctance between two	o coils		[]
A) Self		B) Mutual	C) Series	D) Parallel		
41. Current passi	ng through the capac	citor is called			[]
A) Conduction	on current B) Con	vection current C) D	Displacement current	D) All		
42. Electromagne	etic fields produced b	ру			[]
A) Stationary	charges	B) Steady current	C) time-varying curre	ents D) Al	11	
43. Except in elec	ctrostatics, voltage a	nd potential difference	ce are usually		[]
A) not equiv	alent.	B) equivalent	C) zero	D) in	finity	
44. When a cond	ucting loop is movin	g in a static B field,	an emf is induced in the	e loop. Such ar	n emf is	
called as					[]
A) Motional	emf	B) flux cutting emf	C)Static emf	D) a 6	& b	
1. In case of time	ne varying fields Gau	uss law is			[]
A) Curl I	$H=J+\partial D/\partial t$	B) Div D= ρ_v	C) Div .B $= 0$	D) Curl E =-	∂ B/∂	
2. Formula for o	lisplacement current				[]
A) ∂ D /∂t		B) $\mathbf{J}=\mathbf{J}+\partial\mathbf{D}/\partial\mathbf{t}$	$C)J=\sigma E$	D) J =∂ B /∂t		
3. Who is the fo	under of electromag	netic theory			[]
A) Faraday		B)Lenz	C)Lorentz	D)Maxwell		
4. A time-harmo	onic field is one that	varies	with time.		[]
A) Periodica	lly	B) sinusoidally	C) non-periodically	D)a & b		
5. A loop is rot	ating about the y-axi	s in a magnetic field	$B = Ba \sin wt \mathbf{a_x} Wb/m^2$	The voltage	induced	in
the loop is du	e to				[]
A) Rotional e	emf		B) Transform	er emf		
C) A combina	ation of motional and	d transformer emf	D) none of the	e above		
6. The Maxwell	's equation $\nabla . \mathbf{B} = 0$ is	due to			[]
A) $\mathbf{B} = \boldsymbol{\mu} \mathbf{H}$	B) B= μ	/ H C) non-existe	ence of mono pole	D) none of th	nese	
7. Applications	of electromagnetic w	vaves			[]
A) satellite	B) telev	vision C)Rac	dars D) All			
8. For a uniform	plane wave in the *	-direction has			[]
Electromagnetic I	Fields				Page 19	

			QUESTION BANK	2017	
A) $E_x=0$	$B) H_x=0$	C) $E_x=0$ and $H_x=0$	D) $E_z=0$		
9. E.H of a uniform plan	ne wave is			[]
A) EH	B) 0	C) ηE^2	D) ηH^2		
10. The direction of prop	agation of EM wave is o	obtained from		[]
A) E × H	B) E.H	C) E	D) H		
11. Velocity of the wave	in an idle conductor is			[]
A) Zero	B) very large	C) moderate	D) small		
12. Velocity of EM wave	in free space is			[]
A) Independent of fre	equency (f)	B) increase with inc	rease in f		
C) Decrease with incr	rease in f	D) Zero			
13. Pointing vector P =				[]
a) E×H	B) E.H	C) ½ E×H	D) $(\mathbf{E} \times \mathbf{H})^2$		
14. Depth of penetration	δ=			[]
A) 1/ β	B) 1/α	C) 1/ y	D) 1/ σ		
15. In pointing vector E ×	H represents			[]
A) Electric field per ι	ınit area	B) magnetic field pe	er unit area		
C) power flow per un	it area	D) All			
16. Velocity of EM wave	in good dielectric is			[]
A) $v=\omega/\beta$	B) $v = \omega/\alpha$	C) $v = \omega/\delta$	D) $v=\alpha/\beta$		
21. Reciprocal of attenua	tion constant is called			[]
A) Skin depth	B) pointing vector	C) drift current	D) displacement cu	rrent	
22. A wave propagating i	n the +z direction and the	he wave is called		[]
A) Forward travellin	g wave B) backwar	d travelling wave C) w	avelength D) none		
23. The emf induced in coil	is given by			[]
A) $e = -N \frac{d\emptyset}{dt}$	B) $e = -N \frac{dI}{dt}$	C)e =-L $\frac{dI}{dt}$	D)A and C		
24. A wave propagating i	n the -z direction and th	e wave is called		[]
A) Forward trave	elling wave B) backwar	d travelling wave C) w	avelength D) none		
25. Skin resistance (Ω/m^2	²) is defined part o	f intrinsic impedance fo	or good conductor	[]
A) Real part	B) imaginary part	C) zero	D) none		
26. The field intensity in	a conductor rapidly dec	reases are known as		[]
A) Skin depth	B) skin effect	C) pointing field	D) wave field		
27. Skin depth is also known	own as			[]

28. In dielectric medium the displacement current is compared to conduction current [A) greater B) equal C) lesser D) none 29. The e.m.f is induced in a stationary closed path due to the time varying field is called [A) Statically induced e.m.f D) none 30. The e.m.f is induced in a stationary closed path due to the static varying field is called [A) Statically induced e.m.f D) none 30. The e.m.f is induced in a stationary closed path due to the static varying field is called [A) Statically induced e.m.f D) none 31. Skin Depth δ =	A) Wave depth	B) pointing depth	C) penetration depth	D) drift current		
29. The e.m.f is induced in a stationary closed path due to the time varying field is called A) Statically induced e.m.f B) dynamically induced e.m.f C) Motional e.m.f D) none 30. The e.m.f is induced in a stationary closed path due to the static varying field is called A) Statically induced e.m.f B) dynamically induced e.m.f C) Transformer e.m.f D) none 31. Skin Depth δ = A) α B) $1/\alpha$ C) $1/\beta$ D) β 32. For a time varying fields ∇ X H= A) $1/\alpha$ B) $1/\alpha$ C) $1/\beta$ C) $1/\beta$ D) $1/\alpha$ C) $1/\beta$ D) $1/\alpha$ 33. Poynting vector A) $1/\alpha$ B) $1/\alpha$ C) $1/\beta$ C) $1/\beta$ D) $1/\alpha$ C) $1/\alpha$ D) BXH 34. The induced voltage opposes the flux producing in it is called Law A) Lenz's B) Faraday's C) Ampere's D) Gauss 35. Time varying fields are due to Charges A) Static B) Accelerated C) Decelerated D) Uniform 36. Time varying fields are due to Charges Lenz's A) Static B) Accelerated C) Decelerated D) Uniform 37. The induced voltage opposes the flux producing in it is called Law A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced emf, V_{canf} in any closed circuit is equal to time rate of change of the magnetic flux linkages by the circuit is called Law A) Gauss's B) Ampere's C) Lenz's D) Faraday's D) Faraday's 39. If a moving loop is kept in a static B field, the emf induced is A) Rotational B) Motional C) Both D) None of these 40. The ratio of transmitted electric field to incident electric field is called []	28. In dielectric medium the	displacement current	is compared to con	duction current	[]
A) Statically induced e.m.f C) Motional e.m.f D) none 30. The e.m.f is induced in a stationary closed path due to the static varying field is called A) Statically induced e.m.f D) none 31. Skin Depth δ = C) Transformer e.m.f D) none 31. Skin Depth δ = A) α B) $1/\alpha$ C) $1/\beta$ D) β 32. For a time varying fields ∇ X H= A) $1/\alpha$ B) $1/\alpha$ C) $1/\beta$ D) $1/\alpha$ C) $1/\beta$ D) $1/\alpha$ C) $1/\beta$ D) $1/\alpha$ C) $1/\beta$ D) BXH 33. Poynting vector B) AXE C) EXH D) BXH 34. The induced voltage opposes the flux producing in it is called Law A) Lenz's B) Faraday's C) Ampere's D) Gauss 35. Time varying fields are due to Charges A) Static B) Accelerated C) Decelerated D) Uniform 36. Time varying fields are due to Charges Lenz's A) Static B) Accelerated C) Decelerated D) Uniform 37. The induced voltage opposes the flux producing in it is called Law A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced voltage opposes the flux producing in it is called Law A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced voltage opposes the flux producing in it is called Law A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced voltage opposes the flux producing in it is called Law A) Gauss's B) Ampere's C) Lenz's D) Faraday's C) Lenz's D) Fore of these 40. The ratio of transmitted electric field to incident electric field is called D) None of these	A) greater	B) equal	C) lesser	D) none		
C) Motional e.m.f D) none 30. The e.m.f is induced in a stationary closed path due to the static varying field is called A) Statically induced e.m.f B) dynamically induced e.m.f C) Transformer e.m.f D) none 31. Skin Depth δ =	29. The e.m.f is induced in a	stationary closed path	due to the time varying	field is called	[]
30. The e.m.f is induced in a stationary closed path due to the static varying field is called A) Statically induced e.m.f C) Transformer e.m.f D) none 31. Skin Depth δ = A) α B) $1/\alpha$ C) $1/\beta$ D) β 32. For a time varying fields ∇ X H= A) $J + \frac{\partial \vec{b}}{\partial t}$ B) $J + \frac{\partial \vec{b}}{\partial t}$ C) $J + \frac{\partial \vec{b}}{\partial t}$ D) $I + \frac{\partial \vec{b}}{\partial t}$ 33. Poynting vector A) AXB B) AXE C) EXH D) BXH 34. The induced voltage opposes the flux producing in it is called Law A) Lenz's B) Faraday's C) Ampere's D) Gauss 35. Time varying fields are due to Charges A) Static B) Accelerated C) Decelerated D) Uniform 36. Time varying fields are due to Charges A) Static B) Accelerated C) Decelerated D) Uniform 37. The induced voltage opposes the flux producing in it is called Law A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced voltage opposes the flux producing in it is called Law A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced emf, V_{emf} in any closed circuit is equal to time rate of change of the magnetic flux linkages by the circuit is called Law A) Gauss's B) Ampere's C) Lenz's D) Faraday's C) Lenz's D) Faraday's C) Lenz's D) Faraday's C) Lenz's D) For D) None of these 40. The ratio of transmitted electric field to incident electric field is called D) Uniform	A) Statically induced	l e.m.f	B) dynamically induce	d e.m.f		
A) Statically induced e.m.f C) Transformer e.m.f D) none 31. Skin Depth δ = A) α B) $1/\alpha$ C) $1/\beta$ D) β 32. For a time varying fields $\nabla X H = $ A) $J + \frac{\partial \vec{B}}{\partial t}$ B) $J + \frac{\partial \vec{D}}{\partial t}$ C) $J + \frac{\partial \vec{E}}{\partial t}$ D) $I + \frac{\partial \vec{D}}{\partial t}$ 33. Poynting vector	C) Motional e.m.f		D) none			
C) Transformer e.m.f D) none 31. Skin Depth δ = [] A) α B) $1/\alpha$ C) $1/\beta$ D) β 32. For a time varying fields ∇ X H= [] A) $J + \frac{\partial \vec{B}}{\partial t}$ B) $J + \frac{\partial \vec{D}}{\partial t}$ C) $J + \frac{\partial \vec{E}}{\partial t}$ D) $I + \frac{\partial \vec{D}}{\partial t}$ 33. Poynting vector [] A) AXB B) AXE C) EXH D) BXH 34. The induced voltage opposes the flux producing in it is called Law [] A) Lenz's B) Faraday's C) Ampere's D) Gauss 35. Time varying fields are due to Charges [] A) Static B) Accelerated C) Decelerated D) Uniform 36. Time varying fields are due to Charges Lenz's [] A) Static B) Accelerated C) Decelerated D) Uniform 37. The induced voltage opposes the flux producing in it is called Law [] A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced voltage opposes the flux producing in it is called Law [] A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced voltage opposes the flux producing in it is called Law [] A) Lenz's B) Faraday's C) Ampere's D) Gauss 39. If a moving loop is kept in a static B field, the emf induced is [] A) Rotational B) Motional C) Both D) None of these 40. The ratio of transmitted electric field to incident electric field is called [[]	30. The e.m.f is induced in a	stationary closed path	due to the static varying	g field is called	[]
31. Skin Depth δ =	A) Statically induced	l e.m.f	B) dynamically induce	d e.m.f		
A) α B) $1/\alpha$ C) $1/\beta$ D) β 32. For a time varying fields ∇ X H= [A) $J + \frac{\partial \vec{B}}{\partial t}$ B) $J + \frac{\partial \vec{D}}{\partial t}$ C) $J + \frac{\partial \vec{E}}{\partial t}$ D) $I + \frac{\partial \vec{D}}{\partial t}$ 33. Poynting vector [A) AXB B) AXE C) EXH D) BXH 34. The induced voltage opposes the flux producing in it is called Law [A) Lenz's B) Faraday's C) Ampere's D) Gauss 35. Time varying fields are due to Charges [A) Static B) Accelerated C) Decelerated D) Uniform 36. Time varying fields are due to Charges Lenz's [A) Static B) Accelerated C) Decelerated D) Uniform 37. The induced voltage opposes the flux producing in it is called Law [A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced enft, V_{ent} in any closed circuit is equal to time rate of change of the magnetic flux linkages by the circuit is called Law [A) Gauss's B) Ampere's C) Lenz's D) Faraday's 39. If a moving loop is kept in a static B field, the emf induced is [A) Rotational B) Motional C) Both D) None of these	C) Transformer e.m.:	f	D) none			
32. For a time varying fields ∇ X H=	31. Skin Depth δ =				[]
A) $J + \frac{\partial \vec{B}}{\partial t}$ B) $J + \frac{\partial \vec{D}}{\partial t}$ C) $J + \frac{\partial \vec{E}}{\partial t}$ D) $I + \frac{\partial \vec{D}}{\partial t}$ 33. Poynting vector [] A) AXB B) AXE C) EXH D) BXH 34. The induced voltage opposes the flux producing in it is called Law [] A) Lenz's B) Faraday's C) Ampere's D) Gauss 35. Time varying fields are due to Charges [] A) Static B) Accelerated C) Decelerated D) Uniform 36. Time varying fields are due to Charges Lenz's [] A) Static B) Accelerated C) Decelerated D) Uniform 37. The induced voltage opposes the flux producing in it is called Law [] A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced emf, V_{emf} in any closed circuit is equal to time rate of change of the magnetic flux linkages by the circuit is called Law [] A) Gauss's B) Ampere's C) Lenz's D) Faraday's 39. If a moving loop is kept in a static B field, the emf induced is [] A) Rotational B) Motional C) Both D) None of these	Α) α	B) 1/α	C)1/β	D) β		
33. Poynting vector	32. For a time varying fields ∇	X H=			[]
A) AXB B) AXE C) EXH D) BXH 34. The induced voltage opposes the flux producing in it is calledLaw [] A) Lenz's B) Faraday's C) Ampere's D) Gauss 35. Time varying fields are due toCharges [] A) Static B) Accelerated C) Decelerated D) Uniform 36. Time varying fields are due toCharges Lenz's [] A) Static B) Accelerated C) Decelerated D) Uniform 37. The induced voltage opposes the flux producing in it is calledLaw [] A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced emf, V _{emf} in any closed circuit is equal to time rate of change of the magnetic flux linkages by the circuit is calledLaw [] A) Gauss's B) Ampere's C) Lenz's D) Faraday's 39. If a moving loop is kept in a static B field, the emf induced is [] A) Rotational B) Motional C) Both D) None of these	A) $J + \frac{\partial \vec{B}}{\partial t}$	B) $J + \frac{\partial \vec{D}}{\partial t}$	C) $J + \frac{\partial \vec{E}}{\partial t}$	D) $I + \frac{\partial \vec{D}}{\partial t}$		
34. The induced voltage opposes the flux producing in it is calledLaw	33. Poynting vector				[]
A) Lenz's B) Faraday's C) Ampere's D) Gauss 35. Time varying fields are due toCharges	A) AXB	B) AXE	C) EXH	D) BXH		
35. Time varying fields are due toCharges	34. The induced voltage oppose	es the flux producing in	it is calledLaw		[]
A) Static B) Accelerated C) Decelerated D) Uniform 36. Time varying fields are due toCharges Lenz's [] A) Static B) Accelerated C) Decelerated D) Uniform 37. The induced voltage opposes the flux producing in it is calledLaw [] A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced emf, V _{emf} in any closed circuit is equal to time rate of change of the magnetic flux linkages by the circuit is calledLaw [] A) Gauss's B) Ampere's C) Lenz's D) Faraday's 39. If a moving loop is kept in a static B field, the emf induced is [] A) Rotational B) Motional C) Both D) None of these 40. The ratio of transmitted electric field to incident electric field is called []	A) Lenz's	B) Faraday's	C) Ampere's	D) Gauss		
A) Static B) Accelerated C) Decelerated D) Uniform 37. The induced voltage opposes the flux producing in it is calledLaw [] A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced emf, V _{emf} in any closed circuit is equal to time rate of change of the magnetic flux linkages by the circuit is calledLaw [] A) Gauss's B) Ampere's C) Lenz's D) Faraday's 39. If a moving loop is kept in a static B field, the emf induced is [] A) Rotational B) Motional C) Both D) None of these 40. The ratio of transmitted electric field to incident electric field is called []	35. Time varying fields are due	e toCharg	ges		[]
A) Static B) Accelerated C) Decelerated D) Uniform 37. The induced voltage opposes the flux producing in it is calledLaw [] A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced emf, V _{emf} in any closed circuit is equal to time rate of change of the magnetic flux linkages by the circuit is calledLaw [] A) Gauss's B) Ampere's C) Lenz's D) Faraday's 39. If a moving loop is kept in a static B field, the emf induced is [] A) Rotational B) Motional C) Both D) None of these 40. The ratio of transmitted electric field to incident electric field is called []	A) Static	B) Accelerated	d C) Decelerated	D) Uniform		
37. The induced voltage opposes the flux producing in it is calledLaw	36. Time varying fields are due	e toCharg	ges Lenz's		[]
A) Lenz's B) Faraday's C) Ampere's D) Gauss 38. The induced emf, V _{emf} in any closed circuit is equal to time rate of change of the magnetic flux linkages by the circuit is calledLaw [] A) Gauss's B) Ampere's C) Lenz's D) Faraday's 39. If a moving loop is kept in a static B field, the emf induced is [] A) Rotational B) Motional C) Both D) None of these 40. The ratio of transmitted electric field to incident electric field is called []	A) Static	B) Accelerated	d C) Decelerated	D) Uniform		
38. The induced emf, V _{emf} in any closed circuit is equal to time rate of change of the magnetic flux linkages by the circuit is calledLaw	37. The induced voltage oppose	es the flux producing in	it is calledLaw		[]
the circuit is calledLaw [] A) Gauss's B) Ampere's C) Lenz's D) Faraday's 39. If a moving loop is kept in a static B field, the emf induced is [] A) Rotational B) Motional C) Both D) None of these 40. The ratio of transmitted electric field to incident electric field is called []	,	•	, ·	ŕ		
A) Gauss's B) Ampere's C) Lenz's D) Faraday's 39. If a moving loop is kept in a static B field, the emf induced is [A) Rotational B) Motional C) Both D) None of these 40. The ratio of transmitted electric field to incident electric field is called []			to time rate of change of the	ne magnetic flux linkag	ges by	
39. If a moving loop is kept in a static B field, the emf induced is [A) Rotational B) Motional C) Both D) None of these 40. The ratio of transmitted electric field to incident electric field is called [[]
A) Rotational B) Motional C) Both D) None of these 40. The ratio of transmitted electric field to incident electric field is called [,	,	ŕ	D) Faraday's	_	-
40. The ratio of transmitted electric field to incident electric field is called []
	,	·	,	D) None of the	ese	,
A) Transmission B) Reflection C) Both D) None					L	J
	A) Transmission	B) Keflection	C) Both	D) None		

Prepared by: N. Ramesh Raju